Stellar chemistry:																		
1 H			J	h	e	V	Va	ay		60) r	W	a	rc				2 He
3 Li	4 Be								200				5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg									35		1	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	٩	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	n	103 Lr	104 Ku	105 Ha	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		L	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Martin Asplund

Happy birthday Joss!

Stellar spectroscopy

Stellar Atmosphere Magnetohydrodynamics Radiative transfer Atomic physics Optimal solution Robustness Speed

Stellar analysis

Stellar atmospheres & parameters

Effective temperature T_{eff} Surface gravity logg Metallicity [Fe/H] Microturbulence (1D)

> Radiative transfer: LTE vs non-LTE 1D vs 3D

Stellar abundances: Iogε(X), [X/H] Uncertainties Large stellar surveys Auxiliary information

Stellar surface convection

Stellar surface convection

3D stellar atmosphere models

Ingredients:

- Radiative-hydrodynamical
- Time-dependent
- 3-dimensional
- Simplified radiative transfer

Essentially parameter free

For the aficionados:

Stagger-code (Nordlund et al.) MHD EoS (Mihalas et al.) Opacities (Gustafsson et al.) Opacity binning

Stagger-grid of 3D stellar models

Magic et al. 2013; Collet et al. 2018: 3D and <3D> models and fluxes public: •Stellar spectroscopy •Stellar evolution •Asteroseismology •Exoplanet searches •Etc, etc

StaggerGrid 1.5 • [Fe/H] = +0.0 \bullet [Fe/H] = +0.5 • [Fe/H] = -0.52.0 • [Fe/H] = -1.0• [Fe/H] = -2.0[Fe/H] = -3.02.5 • [Fe/H] = -4.0 S^{-2} 3.0 Сш σ 3.5 bo ••• 4.0 4.5 5.0 (Number of models: 238) 7000 6500 6000 5500 5000 4500 4000 T_{eff} [K]

Stellar analysis

Stellar atmospheres & parameters

Effective temperature T_{eff} Surface gravity logg Metallicity [Fe/H] Microturbulence (1D)

> Radiative transfer: LTE vs non-LTE 1D vs 3D

Stellar abundances: Iogε(X), [X/H] Uncertainties Large stellar surveys Auxiliary information

Surface gravity: Gaia revolution

Effective temperature: Gaia

Gaia BP/RP spectrophotometry

- R~50, 330-1050nm
- ~10⁹ stars with G<20

δ*T*_{eff}~100K, δlog*g*~0.2, δ[Fe/H]~0.2, δA_V~0.1mag

Gaia DR3: end of 2021 (incl. BP/RP & RVS spectra)

Bailer-Jones et al. 2013

Effective temperature: H lines

Very T_{eff} sensitive but sophisticated modelling needed: 3D: Realistic atmospheric temperature structure Non-LTE: Small effects flux variations \Rightarrow large T_{eff} effect

Amarsi et al. 2017: grid of 3D non-LTE H line profiles

Stellar analysis

Stellar atmospheres & parameters

Effective temperature T_{eff} Surface gravity logg Metallicity [Fe/H] Microturbulence (1D)

> Radiative transfer: LTE vs non-LTE 1D vs 3D

Stellar abundances: Iogε(X), [X/H] Uncertainties Large stellar surveys Auxiliary information

Radiative transfer

LTE: Maxwell + Boltzmann + Saha + Planck

Non-LTE radiative transfer

Level populations not determined by Saha & Boltzmann

Stellar analysis

Stellar atmospheres & parameters

Effective temperature T_{eff} Surface gravity logg Metallicity [Fe/H] Microturbulence (1D)

> Radiative transfer: LTE vs non-LTE 1D vs 3D

Stellar abundances: Iogε(X), [X/H] Uncertainties Large stellar surveys Auxiliary information

Atomic data

Huge amount of (uncertain) data needed in non-LTE: Transition probabilities, photo-ionisation cross-sections, collisional excitation/ionisation with H and e⁻, charge transfer, pressure broadening, hyperfine splitting etc

⇒ Support your local atomic physicist!

Differential stellar analysis

Bedell et al. 2018

Extremely high precision (0.01 dex) for stars with similar parameters:

Melendez et al. 2009: ⇒ Signature of planet formation

Bedell et al. 2018: \Rightarrow **Chemical enrichment vs time**

Reggiani et al. 2017: ⇒ Tiny abundance scatter in halo

3D non-LTE line formation

Wang et al. 2019: 3D non-LTE for Li for FGK dwarfs/giants and Li abundances

Interpolation in parameters and abundances using neural networks (MLP) publicly available

Evolution of C and O

Amarsi et al. 2019a,b: 3D non-LTE line formation of C, O and Fe ⇒ No signature of Pop III nucleosynthesis

[C/0]

First stars

Nordlander et al. 2017: 3D non-LTE analysis of SMSS0313-6708 with [Fe/H]<-6.5 Non-LTE abundance corrections >0.5 dex for Mg, Al, Ca, Fe

How to analyse a million stars?

- Automated
- Accurate
- Precise
- Fast
- Reliable
- Reproducible

Large spectroscopic surveys

- Spectrum synthesis
 - Automated, brute force
- Grids of spectra
 - Recio-Blanco et al. 2006
 - Garcia Perez et al. 2016
- Data-driven analysis
 - Ness et al. 2015
 - **Casey et al. 2017**
- Neural networks
 - Bailer-Jones et al. 2000
 - Fabbro et al. 2017

Smart & sparse grids

Rectilinear grids very expensive for high dimensions: $N_{models} \propto (N_{bin})^{dimensions}$

Ting et al. 2016; Rix et al. 2016: Grid models only were needed combined with linear expansion of gradient spectra $N_{models} \propto dimensions!$ $N_{models} \sim 1000?$

3D non-LTE grids with ~30 dimensions!

Cannon: data-driven analysis

Ness et al. 2015: Use linear algebra to construct flux spectra in terms of stellar labels

Flux at a pixel Label coefficients Labels $f_{n\lambda} = \theta_{\lambda}^{T} \cdot \ell_{n} + noise$

Ting et al. 2019:

Physics-informed ab-initio theoretical spectra for sparse and randomly selected grid models with ANN interpolation

Low vs high resolution

High-res: analysis of selected "good" lines Low-res: global fit to whole spectrum Similar information content for equal $\tau_{exposure}$ and N_{pixels} Ting et al. 2017:

Ting et al. 2017:

Measure 14 elements with R=1800 spectra with 0.1 dex precision

Bayesian spectroscopy

Schönrich & Bergemann 2014 (also Bailer-Jones et al. 2013) Combine all spectroscopic, photometric, astrometric, and asteroseismic information with stellar evolution priors

Outlook

- 3D stellar atmosphere models
- 3D non-LTE spectrum formation
- Large spectroscopic surveys
- Physics-informed machine learning
- Bayesian spectroscopy

Great collaborators

