SDSS-V

Jennifer Johnson for MWM team

MWM

SDSS-V

Director: Juna Kollmeier **Project Scientist:** Hans-Walter Rix Spokesperson: Gail Zasowski **Project Manager:** Solange Ramirez Systems Engineer: Stephanie Wachter Telescope Scientist: John Wilson Survey Coordinator Kevin Covey

Jon Bird Andy Casey Nathan De Lee **Boris Gaensicke** Saskia Hekker Jens Kauffmann Marina Kounkel Chao Liu **Gal Matjevic Melissa Ness David Nidever Eddie Schafly Axel Schwope** Keivan Stassun Johanna Teske **Andrew Tkachenko** Nick Troup and Many More!

Why SDSS-V?

Parameters of SDSS-V survey

- APO in the North, LCO in the South both 2.5 meter telescopes
- 1 APOGEE spectrograph
 - H-band, R~22,500
- 1 BOSS spectrograph
 - Optical, R~2000
- 5 year survey, starting in mid-2020
- Fiber robot system to replace aluminum plates need to be commissioned before massive multiplexing starts
- 500 robots up to 300 fibers to the APOGEE spectrographs, 500 fibers to BOSS spectrographs

SDSS-V -- Milky Way Mapper

Animation courtesy of C Sayres

TESS planet hosts

Require high SNR to measure all the relevant elements: Si, Mg, Fe, Na, Al, Ca Note that [Fe/H] and $[\alpha/Fe]$ at least are needed to get correct M dwarf radii

Fraction of Stars with Planets: 69%

Figure 3. For the nominal small planet occurrence rate $\eta = 69\%$ and three choices of the metallicity measurement precision, the critical sample size N_{STP} (= N_{SNTP}) required to confidently detect the planet–metallicity correlation with a power-law index γ . Here the term "confidently" means that a random set of STP and SNTP samples has greater than 95% probability to detect the input correlation at greater than the 2σ confidence level.

2.0

2.5

3.0

1.5

1.0

0.5

Convective Cores

Using O and B eclipsing binaries in the CVZ, determine M and R

Constrain asteroseismic models and derive internal structure, for example, the amount of core overshoot

White Dwarfs to G < 20, ~200,000 stars

Credit: Carnegie Observatories, Jay Farhi

Solar Neighborhood Census ~300,000 stars within 100 pc -- volume-limited to Hburning limit ~5000 with SDSS spectra already

Compare with 400 stars in the RECON 10 pc sample

Exploit wide binaries, best studied cool stars, etc.

RECONSand reference www.recons.org

Targeting for the Young Galaxy

~100,000 protostars – pre-main-sequence stars -- all-sky to H < 13 with APOGEE

~100,000 massive stars (to 6 solar masses) with BOSS spectrographs

Targeting for YSG/RSG still being worked out

Galactic Genesis

Main Selection Criteria -- > 5 million stars

- H < 11
- G-H > 3.5
- MWM + Gaia abundances and stellar parameters for all the stars

Gaia magnitudes are used; Gaia parallaxes are not

- With DR2 accuracy and assuming 15% accuracy for spectroscopic parallaxes (Hogg+ 2019), spectra outdo Gaia at around 3.75 kpc
- So goal of complementing Gaia in the red, luminous regime leads to getting enough stars to probe the Galaxy contiguously to appreciable distances

What 5 million⁵ stars gets you

Contours show the distance reached at $100 \text{ stars}/(100 \text{ pc})^3$ density in a Galaxia $\frac{1}{2}$ model H < 11, G-H > 3.5

Figure: Jon Bird

Area of Galactic midplane with > 100 stars per $(100 \text{ pc})^2$

20

10

5

2

ed

Millons of Stars Observ

Normal Stars

Binary Science in the Gaia Era

0.5 Solar Mass Dwarf Host

MWM and Binary Science

Observations with MWM

- Improve accuracy to 75 m/s on the APOGEE spectrograph
- Massive Stars
- Single-epoch observations of astrometric binaries, particularly those with dark companions
 - Mass, metallicity, age-indicator
- Search for compact binaries
- Long-baseline observations of stars observed in APOGEE-1 and -2

Exploiting Continuity

Nature doesn't do this

Ocean's Eleven

Glass turns into plate (then glass again)

Red Giant bump: Classic Example

Nataf 2013

Radial Migration and Continuity

Star formation in WDs & low-mass stars

Thank you!