Galactic Bulge: chemical evolution

Sofia Feltzing Lund Observatory

Setting the stage

- Primordial collapse where the Bulge and the thick disk form early on simultaneously (also referred to as the in situ scenario) via strong gas accretion.
- Bulge formation by hierarchical merging of subclumps, prior to the disk formation.
- Merging of early thick-disk subclumps, migrating to the center and forming the Bulge.
- Major merger hypothesis, where disk galaxies result from major mergers of gas-rich galaxies.
- Formation of the Bulge from the disk through a bar instability (secular evolution).
- Formation of a Bulge component triggered by the accretion of dwarf galaxies.
- The hope is that elemental abundances will help to differentiate between (at least some of) these scenarios
- Barbuy et al and McWilliam review the current status of observations and chemo/dynamical models

McWilliam 2016 PASA <u>33</u> e040 Barbuy, Chiappini, Gerhard 2018 ARA&A <u>56</u> 223

Elemental abundances in the Galactic Bulge area

McWilliam 2016 PASA 33 e040 (adapted from Matteucci & Brocato 1990)

Elemental abundances in the Galactic Bulge area

The example of NGC6528 – one of the most metal-rich globular clusters

SNR - so important

Red giant stars in NGC 6528 - each symbol is one star One, Two, Three exposures combined

 How much of perceived scatter in elemental abundance trends is just low SNR results?

Liu, Ruchti, Feltzing, Primas 2017 A&A 601 A31

Two recent examples

of self-consistent bulge chemical evolution studies

Why dwarf stars?

• Spectra are "easy" to analyse, at least easier than even moderately metal-poor giants.

Target-of-Opportunity program on UVES/VLT P82 – P94; PI: Feltzing Keck and Magellan access through collaboration $20 \le A_{max} \le 1000$

ToO program at VLT with UVES		
Period	Observed	Awarded
P82 (2008)	2	2
P83	7	8
P84	4	4
P85	10	10
P86	2	3
P87	10	10
P88	3	4
P89	15	15
P90	5	5
P91	15	15
P92	4	5
P93	8	8
P94 (2014)	5	5
Total:	88	94

Successful analyses		
Keck	6	
Magellan	10	
VLT	75	
Total:	91	

hout borders, Ljubljana, by Sofia Feltzing (Lund), June 2019

- Self-consistent comparison between bulge dwarf stars and solar neighbourhood stars
- Bulge fits upper envelope of thick disk
- Careful studies of giants have shown the same

Bensby et al. 2017 A&A 605 A89 e.g. Jönsson et al. 2017 A&A 598 A101

Giants from APOGEE NIR spectra

Two bulge sequences?

 R_{GC} <3 kpc and |z| < 0.5 kpc

- High-alpha as expected
- Second sequence p.m. indicate associated with bar
- Different ages? Compare µ-lensed stars (?)

Rojas-Arriagada et al 2019 arXiv:1905.01364

When do bulge stars form?

When do bulge stars form?

Madau & Dickinson 2014 ARA&A <u>52</u> 415 **Redshift** Bensby et al. 2014 A&A <u>562</u> A71 Barbuy, Chiappini, Gerhard 2018 ARA&A <u>56</u> 223

µ-lensed ages

Bensby et al. 2017 A&A 605 A89 but see Renzini et al. 2018 ApJ 863 16

C/N ages for APOGEE

74 stars in Baade's window C/N-ages might be underestimated for old stars

Schultheis et al. 2017 A&A 600 A14

Presented at Stars without borders, Ljubljana, by Sofia Feltzing (Lund), June 2019

 Consistent with local results – some young stars could be blue stragglers, but not all young stars are blue stragglers

Chiappini et al 2015 A&A <u>576</u> L12, Martig et al 2015 MNRAS <u>451</u> 2230 But see Jofré et al 2016 A&A <u>595</u> A60

Bensby et al. 2017 A&A 605 A89

Check the models

- Much progress in the observational picture but we need to remain observant to not over interpret the data (ie interpreting the noise as signal)
- Compare only elemental abundance trends of same type of stars
- Avoid low SNR
- Gaia has already started to change also this field future releases will add much more
- Upcoming surveys such as APOGEE-S and 4MOST will add further depth to the study of the Bulge region

