

4MOST – 4m Multi-Object Spectroscopic Telescope

4MOST: ESO's wide-field, high-multiplex optical spectroscopic survey facility

Matthias Steinmetz (AIP)

16 June 2019

www.4MOST.eu

How I got involved in this ...

- Chemical tagging (Freeman & Bland-Hawthorn 2002), substructure in velocity space (Helmi et al. 2000)
- Motivation: Astrometry mission DIVA (approved in 2001 as a mission in the German national space program DLR), on the US side: FAME
 - astrometry of some 40M stars, complete to V=10.5 (0.3 mas, 0.5 mas/a), but no RVs!
 - HIPPARCOS: Geneva Copenhagen Survey (2004): 11 years after end of mission
- Around 2002: about 50 000 stars in CDS with radial velocities, but 1 million galaxy redshifts!

A bit of RAVE history

GAIA Spectroscopy, Science and Technology ASP Conference Series, Vol. 298, 2003 U. Munari ed.

RAVE: the RAdial Velocity Experiment

Matthias Steinmetz¹

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

Abstract. RAVE² (RAdial Velocity Experiment) is an ambitious program to conduct an all-sky survey (complete to V=16 mag) to measure the radial velocities, metallicities and abundance ratios of 50 million stars using the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO), together with a northern counterpart, over the period 2006 2010. The survey will represent a giant leap forward in our understanding of our own Milky Way galaxy, providing a vast stellar kinematic database three orders of magnitude larger than any other survey proposed for this coming decade. RAVE will offer the first truly representative inventory of stellar radial velocities for all major components of the Galaxy. The survey is made possible by recent technical innovations in multi-fiber spectroscopy, specifically the development of the 'Echidna' concept at the AAO for positioning fibers using piezo-electric ball/spines. A 1 m-class Schmidt telescope equipped with an Echidna fiber-optic positioner and suitable spectrograph would be able to obtain spectra for over 20 000 stars per clear night. Although the main survey cannot begin until 2006, a key component of the RAVE survey is a pilot program of 10⁵ stars which may be carried out using the existing 6dF facility in unscheduled bright time over the period 2003-2005.

How I got involved in this ...

- Chemical tagging (Freeman & Bland-Hawthorn 2002), substructure in velocity space (Helmi et al. 2000)
- Motivation: Astrometry mission DIVA (approved in 2001 as a mission in the German national space program DLR), on the US side: FAME
 - astrometry of some 40M stars, complete to V=10.5 (0.3 mas, 0.5 mas/a), but no RVs!
 - HIPPARCOS: Geneva Copenhagen Survey (2004): 11 years after end of mission
- Around 2002: about 50 000 stars in CDS with radial velocities, but 1 million galaxy redshifts!
- idea to have a 50 million object spectroscopic survey using an 2000 fibre Echidnatype positioner on the wide-field UK Schmidt Telescope (kickoff May 2002)
- target of opportunity: bright time of 6dF (6dFGRS in dark time) for proof of concept
 ⇒ RAVE

A bit of RAVE history

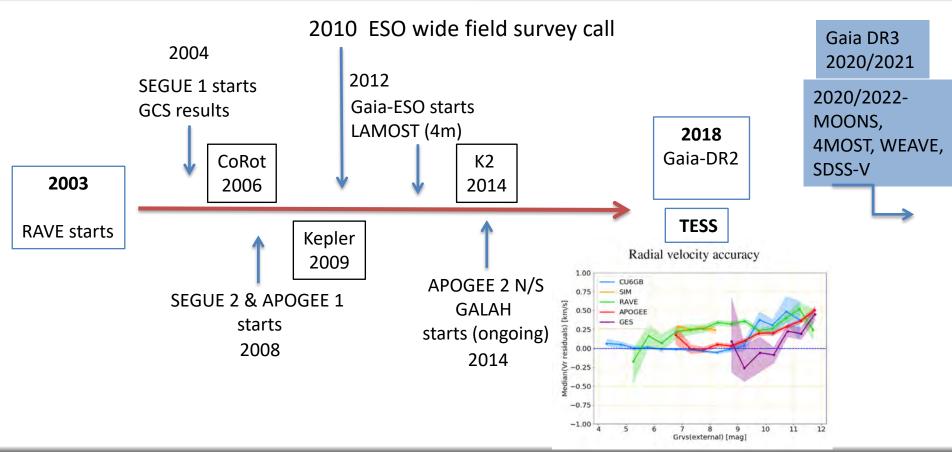
esa ESA-ESO Working Groups

GAIA Spectroscopy, Science and Technology ASP Conference Series, Vol. 298, 2003 U. Munari ed.

RAVE: the RAdial Velocity Experiment

Matthias Steinmetz¹

Astrophysikalisches Institut Potsdam, An der Sternwarte Potsdam, Germany


Abstract. RAVE² (RAdial Velocity Experiment) is an gram to conduct an all-sky survey (complete to V=16 m the radial velocities, metallicities and abundance ratios of 3 using the 1.2 m UK Schmidt Telescope of the Anglo-Austr tory (AAO), together with a northern counterpart, over t 2010. The survey will represent a giant leap forward standing of our own Milky Way galaxy, providing a vast st database three orders of magnitude larger than any other st for this coming decade. RAVE will offer the first truly rep ventory of stellar radial velocities for all major components The survey is made possible by recent technical innovation spectroscopy, specifically the development of the 'Echidna' AAO for positioning fibers using piezo-electric ball/spine Schmidt telescope equipped with an Echidna fiber-optic suitable spectrograph would be able to obtain spectra for or per clear night. Although the main survey cannot begin up component of the RAVE survey is a pilot program of 105 st be carried out using the existing 6dF facility in unschedul over the period 2003-2005.

2010

From RAVE to Gaia+

VISTA at Paranal Observatory, Chile

Instrument Specification

Specification	Design value
Field-of-View (hexagon)	~4.2 degree ² (ø>2.6°)
Multiplex fiber positioner	2436
Medium Resolution Spectrographs (2x) # Fibres Passband Velocity accuracy	R~4000-7500 812 fibres (2x) 370-950 nm < 1 km/s
High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy	R~20,000 812 fibres 392.6-435.5 nm, 516-573 nm, 610-679 nm < 1 km/s
# of fibers in Ø=2' circle	>3
Fibre diameter	ø=1.45 arcsec
Area (first 5 year survey)	>2h x 18,000 deg ²
Number of science spectra (5 year)	~75 million of 20 min

Wide-field, high-multiplex optical spectroscopic survey facility for ESO

Status:

- FDR completed, in construction phase, operations start end of 2022 (2-3 x 5 year)
- GTO surveys: 70% in cycle 1, 20% in cycle 2 + 3
- Call for Letter of Intent Q4/2019 for community surveys ⇒ call for proposals Q2/2020

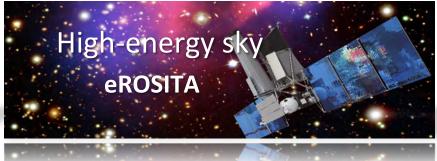
Science:

- Cosmology, galaxy evolution, high-energy and Galactic science
- Complement large-area space missions: Gaia, eRosita, Euclid, Plato
- Complement groud-based surveys: VISTA, VST, DES, LSST, SKA, etc.

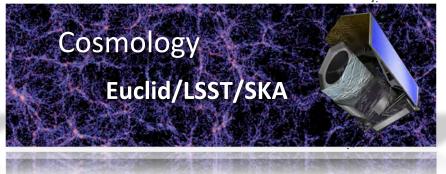
Survey Facility:

- Instrument, science operations, data products, science
- Run all-sky 5 year *public surveys* in parallel with yearly data releases
- Key surveys organized by consortium, add-on surveys from community through ESO

Instrument specification:


- High multiplex: 1600 fibres @R=5000 + 800 fibres @R=20,000 in parallel
- Wavelength: LR: 370 950nm
 HR: 392 437 nm, 515 572 nm, 605 675 nm
- 4.1m VISTA telescope of ESO, field of view: $\emptyset = 2.6^{\circ}$

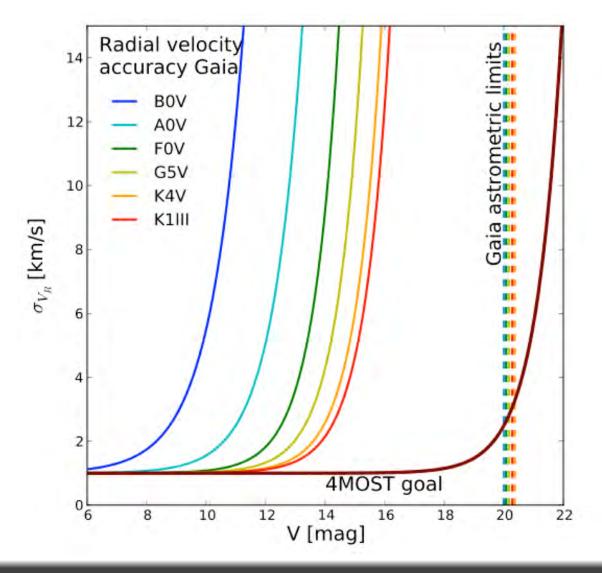
PI: R. de Jong (AIP)


Science Themes



Ten Consortium Surveys

No	Survey Name	Survey (Co-)PI
S1	Milky Way Halo LR Survey	Irwin (IoA) , Helmi (RuG)
S2	Milky Way Halo HR Survey	Christlieb (ZAH)
S3	Milky Way Disk and Bulge LR Survey	Chiappini, Minchev, Starkenburg (AIP)
S4	Milky Way Disk and Bulge HR Survey	Bensby (LU), Bergemann (MPIA)
S 5	Galaxy Clusters Survey	Finoguenov (MPE)
S6	AGN Survey	Merloni (MPE)
S7	Galaxy Evolution Survey (WAVES)	Driver (USW), Liske (HHU)
S8	Cosmology Redshift Survey	Richard (CRAL), Kneib (EPFL)
S9	Magellanic Clouds Survey	Cioni (AIP)
S10	Time-Domain Extragalactic Survey (TiDES)	Sullivan (Southampton)



March 2019 (No. 175)

Highlights include:

- R.S. de Jong et al.: 4MOST: Project overview and information for the First Call for Proposals
- G. Guiglion et al.: 4MOST Survey Strategy Plan
- o A. Helmi et al.: 4MOST Consortium Survey 1: The Milky Way Halo Low-Resolution Survey
- N. Christlieb et al.: 4MOST Consortium Survey 2: The Milky Way Halo High-Resolution Survey
- o C. Chiappini et al.: 4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)
- T. Bensby et al.: 4MOST Consortium Survey 4: Milky Way Disc and Bulge High-Resolution Survey (4MIDABLE-HR)
- A. Finoguenov et al.: 4MOST Consortium Survey 5: eROSITA Galaxy Cluster Redshift Survey
- o A. Merloni et al.: 4MOST Consortium Survey 6: Active Galactic Nuclei
- S.P. Driver et al.: 4MOST Consortium Survey 7: Wide-Area VISTA Extragalactic Survey (WAVES)
- J. Richard et al.: 4MOST Consortium Survey 8: Cosmology Redshift Survey (CRS)
- M.R.L. Cioni et al.: 4MOST Consortium Survey 9: One Thousand and One Magellanic Fields (1001MC)
- E. Swann et al.: 4MOST Consortium Survey 10: The Time-Domain Extragalactic Survey (TiDES)
- ESO Phase 1 Project Team, : The New ESO Phase 1 System

25.6 MB PDF file Table of Contents

4MOST Consortium Survey 1: The Milky Way Halo Low-Resolution Survey

Amina Helmi¹ Mike Irwin² Alis Deason³ Eduardo Balbinot¹ Vasily Belokurov² Joss Bland-Hawthorn⁴ Norbert Christlieb⁵ Maria-Rosa L. Cioni⁶ Sofia Feltzing⁷ Eva K. Grebel⁸ Georges Kordopatis⁹ Else Starkenburg⁶ Nicholas Walton² C. Clare Worley²

- Characterizing Dark Matter halo of MW
- Constraining its nature
- Halo substructures chemo-kinematic
- Metallicity distribution
- Constrains on yields first stars
- Characterisation of the stellar halo-thick disc interface from overlap with the 4MIDABLE-LR survey with the aim of jointly constraining the temporal assembly and evolution of the thick disc and inner halo
- $-10 < G + 5 \log 10 (proper motion) < 10$
- parallax $-2\sigma_{parallax} < 0.2$
- 0.55 < G–GRP < 0.8 mag
- 15 < G < 20 mag
- This leads to a sample of approximately 2 million objects
- |b| > 20 degrees.
- survey area: 80 < Dec < + 20 degrees

4MOST Consortium Survey 2: The Milky Way Halo High-Resolution Survey

Norbert Christlieb¹ Chiara Battistini¹ Piercarlo Bonifacio² Elisabetta Caffau² Hans-Günter Ludwig¹ Martin Asplund³ Paul Barklem⁴ Maria Bergemann⁵ Ross Church⁶ Sofia Feltzing⁶ Dominic Ford⁶ Eva K. Grebel⁷ Camilla Juul Hansen⁵ Amina Helmi⁸ Georges Kordopatis⁹ Mikhail Kovalev⁵ Andreas Korn⁴ Karin Lind⁵ Andreas Quirrenbach¹ Jan Rybizki⁵ Ása Skúladóttir⁵ Else Starkenburg¹⁰

Criterion #	Bright survey	Faint survey	Deep survey
1	+20° ≥ dec ≥ -80°		Coloated aveca
2	b > 20°		Selected areas
3	[Fe/H] < -0.5		
4	12.0 ≤ G ≤ 14.5	14.5 < G ≤ 15.5	15.5 < G ≤ 17.0
5	$0.15 \le (G_{BP} - G_{RP})_0 \le 1.10$		
6	$(1.10 < (G_{BP} - G_{RP})_0 \le 1.60) \& (M_G < 3.5)$		
Total number of targets	1 150 000	800 000	26 000
Targets at [Fe/H] < -2.0	13 000	18 000	100

4MOST Consortium Survey 4: Milky Way Disc and Bulge High-Resolution Survey (4MIDABLE-HR)

Thomas Bensby¹ Maria Bergemann² Jan Rybizki² Bertrand Lemasle³ Louise Howes¹ Mikhail Kovalev² Oscar Agertz1 Martin Asplund⁴ Paul Barklem⁵ Chiara Battistini6 Luca Casagrande⁴ Cristina Chiappini7 Ross Church¹ Sofia Feltzing¹ Dominic Ford¹ Ortwin Gerhard⁸ Iryna Kushniruk¹ Georges Kordopatis⁹ Karin Lind^{2,5} Ivan Minchev⁷ Paul McMillan¹ Hans-Walter Rix² Nils Ryde1

Gregor Traven¹

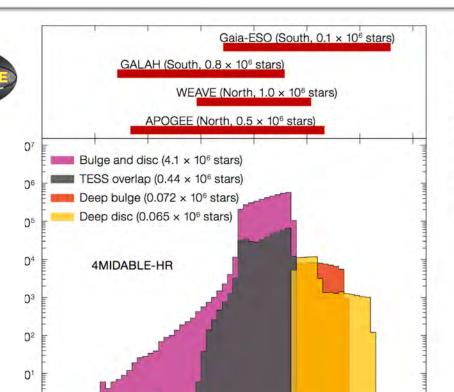


Figure 1. Magnitude distributions of our main bulge and disc sample and our two deep fields, one towards the bulge and one towards the 4MOST WAVES fields. The horizontal lines in the upper panel mark the magnitude ranges of selected high-resolution spectroscopic surveys, as indicated.

Deep Disk Field

Deep Bulge Field

20

18

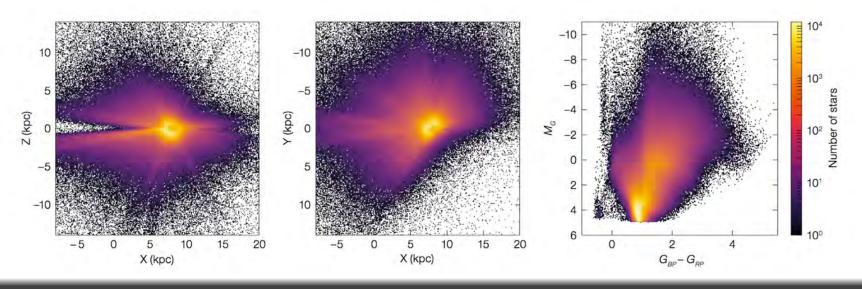
Bulge Cepheid Field

10

12

14

G (mag)

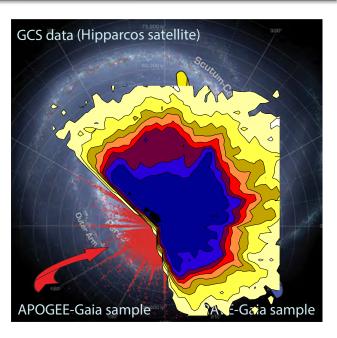

16

Simple Target Selection:

Mes

- G < 15.5 -> allows S/N = 100 per Å in 2 h
- M_G < 5 mag to avoid cool MS stars
- Gaia parallaxes to determine M_G
- $-80^{\circ} < Dec < +20^{\circ}$
- 21 M targets from the Gaia DR2

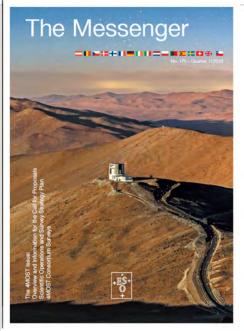
- Randomly reduced to~ 4 M targets
- Goal: to observe 2.5 M stars
- Disk deep (~ 65,000 stars) and
 Bulge Deep G < 17.5 (~ 72,000 stars)



4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)

Cristina Chiappini1 Ivan Minchev¹ Else Starkenburg¹ Friedrich Anders² Nicola Gentile Fusillo³ Ortwin Gerhard⁴ Guillaume Guiglion¹ Arman Khalatyan¹ Georges Kordopatis⁵ Bertrand Lemasle⁶ Gal Matijevic¹ Anna Barbara de Andrade Queiroz¹ Axel Schwope¹ Matthias Steinmetz1 Jesper Storm¹ Gregor Traven⁷ Pier-Emmanuel Tremblay³ Marica Valentini¹ Rene Andrae⁸ Anke Arentsen¹

Martin Asplund⁹ Thomas Bensby⁷ Maria Bergemann⁸ Luca Casagrande9 Ross Church⁷ Gabriele Cescutti 10 Sofia Feltzing⁷ Morgan Fouesneau⁸ Eva K. Grebel⁶ Mikhail Kovalev⁸ Paul McMillan⁷ Giacomo Monari¹ Jan Rybizki8 Nils Ryde⁷ Hans-Walter Rix8 Nicholas Walton 11 Maosheng Xiang⁸ Daniel Zucker¹² and the 4MIDABLE-LR Team



Credit: Minchev

11 subsurveys

- Extended solar neighborhood
- Dynamical disk
- Faint dynamical disk
- Chemodynamical disk
- Bulge/inner Galaxy
- Very metal-poor stars
- White dwarfs
- Compact X-ray binaries
- Cepheids
- Asteroseismic targets
- Hot subdwarfs

March 2019 (No. 175)

Highlights include:

- R.S. de Jong et al.: 4MOST: Project overview and information for the First Call for Proposals
- o G. Guiglion et al.: 4MOST Survey Strategy Plan
- o A. Helmi et al.: 4MOST Consortium Survey 1: The Milky Way Halo Low-Resolution Survey
- N. Christlieb et al.: 4MOST Consortium Survey 2: The Milky Way Halo High-Resolution Survey
- o C. Chiappini et al.: 4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)
- o T. Bensby et al.: 4MOST Consortium Survey 4: Milky Way Disc and Bulge High-Resolution Survey (4MIDABLE-HR)
- o A. Finoquenov et al.: 4MOST Consortium Survey 5: eROSITA Galaxy Cluster Redshift Survey
- o A. Merloni et al.: 4MOST Consortium Survey 6: Active Galactic Nuclei
- o S.P. Driver et al.: 4MOST Consortium Survey 7: Wide-Area VISTA Extragalactic Survey (WAVES)
- o J. Richard et al.: 4MOST Consortium Survey 8: Cosmology Redshift Survey (CRS)
- M.R.L. Cioni et al.: 4MOST Consortium Survey 9: One Thousand and One Magellanic Fields (1001MC)
- E. Swann et al.: 4MOST Consortium Survey 10: The Time-Domain Extragalactic Survey (TiDES)
- o ESO Phase 1 Project Team, : The New ESO Phase 1 System

25.6 MB PDF file Table of Contents

Call for LoI 2nd half 2019 System Integration Potsdam mid 2021

Acceptance Europe Feb 2022

Acceptance Chile Nov 2022 4MOST starts on VISTA 2022/2023 For 5 years

Schedule

Wide Field Corrector and Atmospheric Dispersion Compensator (WFC/ADC)

4 Lenses Groups with 2 counter-rotating prisms

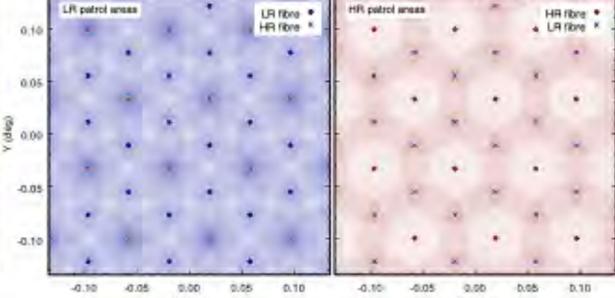
Field $\emptyset = 2.6$ degree

535 mm Focal Diameter Largest lens ~950mm

ADC functions to ZD=55°

Design AIP
Assembly and alignment
UCL

AESOP Fiber Positioner

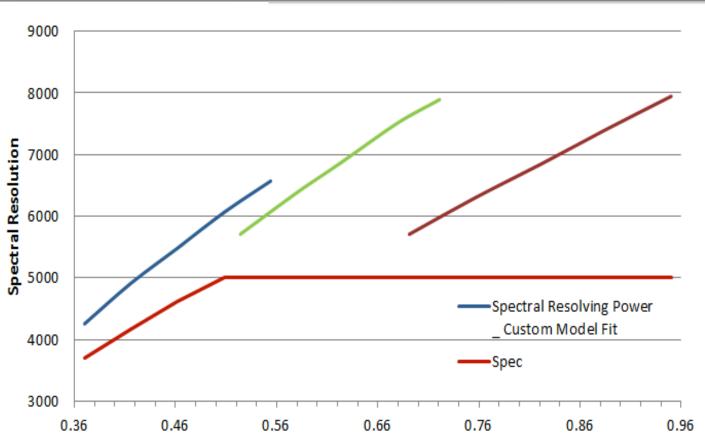


2436 Fiber Probes
-patrol diameter 2.4x pitch
-minimum separation ~20"
-reconfiguration time <2
min during CCD readout

$N_{\rm fib}$	LR fibers	HR fibres
	%	%
1	_	39.8
2	7.2	46.1
3	50.9	14.1
4	33.0	_
5	3.6	_
6	5.3	_

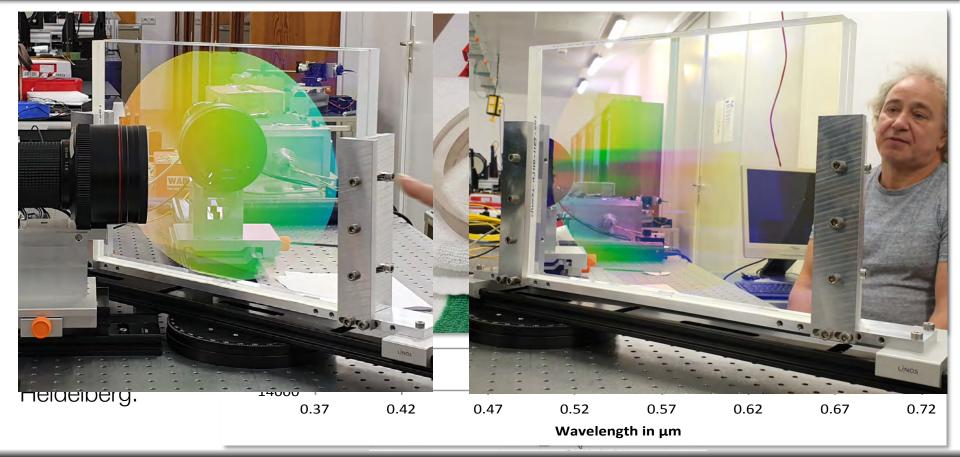
Low Resolution Spectrograph (LRS)

3 arms spectrograph 3 CCDs 6k x 6k


200 mm beam size

812 science fibers per spectrograph

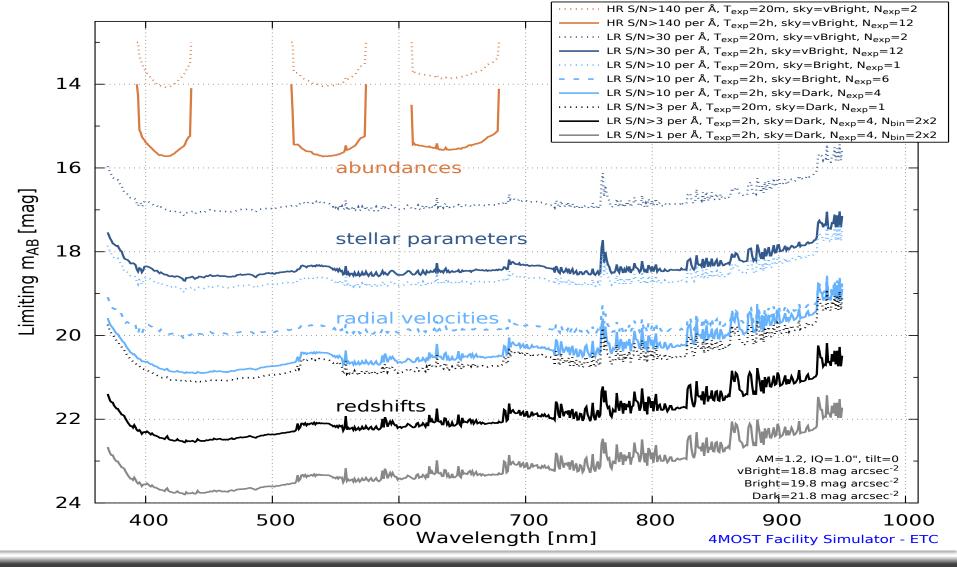
2 mirrored spectrographs


Thermally stabilized

Design and build at CRAL in Lyon.

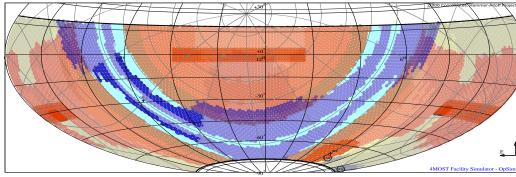
High Resolution Spectrograph (HRS)

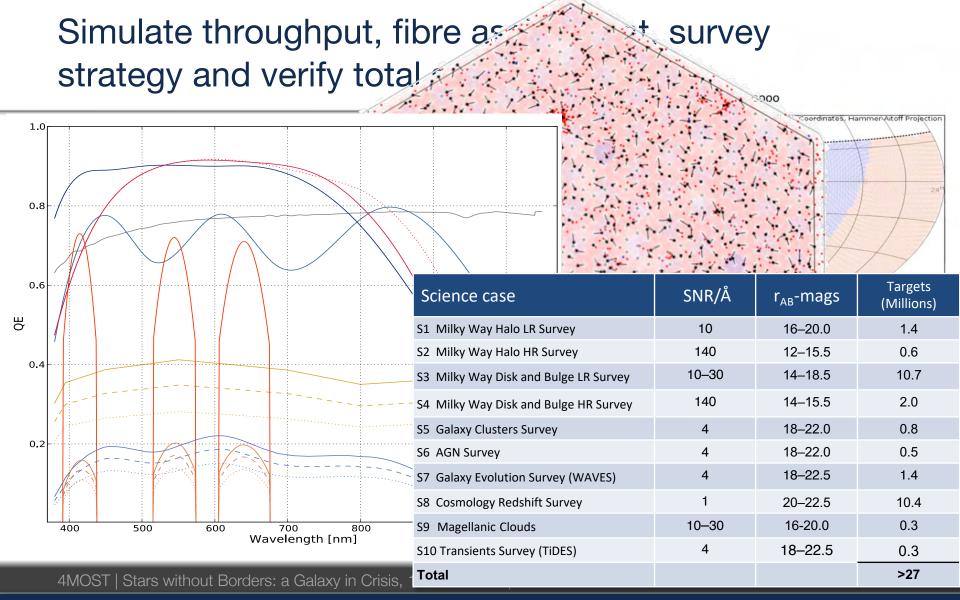
4MOST Detectors


MOST

- 9 identical detectors (plus spares and engineering devices)
- E2V 6kx6k Deep Depletion Broad Band Coating
- Detector head based on ESPRESSO design
- Cooling and controls identical to MUSE design
- All to ESO standards

Design and build at ESO in Garching.





4MOST Operations

- Unique operations model for MOS instruments suitable for most science cases
- 4MOST program defined by Public Surveys of 5 years
- Surveys will be defined by Consortium and Community
- All Surveys will run in parallel
 - Surveys share fibres per exposure for increased efficiency
- Consortium Key Surveys will define observing strategy
 - Millions of targets all sky
 - Fill all fibres
- Add-on Surveys for smaller surveys
 - Small fraction fibers all sky or
 - dedicated small areas
 - 10³ to 10⁶ targets
- Several passes of sky with 2, 10, 20, 30 mins
- Wedding-cake distribution for total time 1h to 10h

Schedule and Milestones

- March 2019: Final Design Review-2, detailed designs finalized - Call for Proposals Readiness Review, ready for Phase I community proposal selection Fall 2019: - Call for Letters of Intent from Community Jan 2021: - All subsystems manufactured, assembled, integrated and verified Feb 2022: - Full system integrated and verified at AIP, preliminary acceptance Europe Oct 2022: System delivered, installed and commissioned on telescope, preliminary acceptance Chile
- Nov 2022 Oct 2027:
 - First science survey of 4MOST, 30% of targets available for Community Surveys

(Pf

