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* Equilibrium models

* Torus mapping

* Resonant trapping

* Non-axisymmetric tori

* Bar trapping and the UV plane



Equilibrium models vital

* Only tool to map DM
* Perfect way to start an N-body simulation

* Perfect tool to organise knowledge:

* f(J,age,chemistry) + selection fn -> expectation of any survey query
(Besancon model)



Modelling technologies

N\ b2\

* Syer & Tremaine 1996 -> Morganti+2013, Portail+201g, ..

* 1(J)
* B (2010), B (2012), B (2014), Piffl+ (2014,2015), Post+(2017), Pascale+(2019)
For each component (incl DM) choose analytic f(J,age,..)
Mass of each component determined up front
Solve for self-consistently generated &(x)
Then any observable can be predicted
Fully exploit Jeans thm



Axisymmetric model fitted to Gaia DR2
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Model fitted to Gaia DR2 (R~7.4)
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Model fitted to Gaia DR2 (R~9.2)

* Red: *halo
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 Black: data




Getting & using AA-variables

* Model just shown uses the Staeckel Fudge (B 2012) to pass
(%,v) ->(J,0)

* Annie remarked that Besancon model fits Staeckel @(x) to
real @(x)

* Staeckel Fudge applies to any reasonable axisymmetric @(x)
and triaxial @(x) without figure rotation (Sanders & B 2014)

* But a rotating bar is out of scope



Torus mapping

 Regular orbits cover 3-tori in 6d phase space

* They lie within 5d hyperspheres H(x,v)=E

* The tori are null:
* Poincare invariant of any 2d surface within them vanishes
* Poincare invariant to Hamiltonian mech what g, is to relativity

* If a null 3-torus lies within H=const, it's an orbital torus!

McGill & B 1990

* Image of a null torus under canonical map is null

* So we find orbital tori by projecting toy torus into phase space &
adjusting parameters of map until H~const on image (McGill & B 1990,
Kaasalainen & B 1995)

* Think of this as upgrade to Runge-Kutta routine



Torus mapping

* Actions of torus inherited from toy torus
» Can construct conjugate angle variables forimage

* After constructing grid of tori, fill gaps by mterpolatlon
* Then have system of AA vars (6,]) :

Binney 2016



Resonant trapping

Sometimes variance of H on image can’t be driven
to zero

Torus with the specified actions doesn’t exist

But foliation by tori defines a Hamiltonian H'=<H>
for which constructed tori are orbital tori

So we have H' with AA vars plus perturbation A=H-
H" and can apply Hamiltonian p-theory

ghe 5oblem will be that there’s a 'slow’ angle
S: :

Make trivial canonical transformation so this
becomes 6,

Fourier expand — Binney 2016
Neglect fast angles 6, & 0,

AJ,0) =) hy(T)e™?




Resonant trapping

* Now have dynamicsin (J_,0,) plane with
orbit A=const

» A often approximated by pendulum H
but Kaasalainen (1996) showed you can
do better

e 1d integrals now yield analytic model of
tori, complete with AA vars

* Excellence of model demonstrated by
Poincare S0Ss

* Amazing fit quality!

Binney 2016



Non-axisymmetric tor

* Assume @(x,t) is stationary in steadily
rotating frame

IR {aTNa] H (x.p) = Hin(X,P) — wpps

* In axisymmetric ©(x), J, = p,,

* So H can be splitin H(J) plus
pertu go i1 1/ (6.3) = {FT(3) — w,J,} + Hi(6,T)

* We do p-theory using axisymmetric tori

S N A ey =7
p o

-> non-axisymmetric tori Sos o 1s 2 25

* In realistic bar, regions trapped by CR & Binney 2018
OLR are extensive




Trapped tori (B2018)

At CR Lz swaps between 2 values




Constants of motion

* Jeans thm ->f(J) -> need for J(x,v)

* We have AA vars for each non-
axisymmetric torus

* Can plot contours of const J in
(UV) plane

 f must be the same at different
intersections of one pair contours

* From this can compute from tori
ratio of densities in (U,V) at
intersections

* Ratio of predicted to measured
densities in (U,V) a constraint on
d)Tgx) additional to shape & location
O trapped region Binney 2018 Const Jipration

Const Jr




A remarkably low pattern speed?

2 = 0.033

2, = 0.040

“I) = 0.042 Q‘, = 0.045

B & Galligan in prep



Binney 2018

About the DF

* The DF in the trapped zone is fundamentally
unrelated to that outside it

* Since Dehnen (1999) it's been common to
assign f by backwards integration to
axisymmetric @(x) and f(J)

 This procedure is arbitrary

 Trapping is inherently non-adiabatic, so does
dependon path taken by &(x,t)

* We need to fit f(J) to data & recognise it
constrains history

* In 2018 for fun | chose f(J) to minimise impact
of trapping on (U,V)

* Nature hasn’t been so perverse

Gaia DR2RVS



Conclusions

* Jeans thm is an enormously powerful tool
* Our point of departure if at all possible

* AA vars are perfect for modelling both equilibria and disturbances

* Torus mapping + p-theory enable us to bring these tools to bear on the
bar

* We have no reliable means of predicting DF for trapped orbits

* We have only scratched the surface
* Vertical structure? J, computed but seems to play minor role
* Harmonics m > 2 —likely to introduce chaos

* Comparison of predicted/measured densities still involves small numbers of
particles



